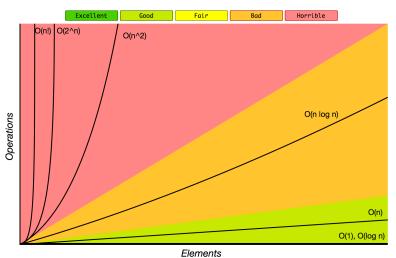
Логика

Данил Браун

2021-04-05

«Оценка сложности алгоритмов»

Big-O Complexity Chart



«Оценка сложности алгоритмов»

$$\textit{O}(\textit{g}) := \{\textit{f} \mid \exists \textit{C} \in \mathbb{R}_{>0} \; \exists \textit{N} \in \mathbb{N} \; \forall \textit{n} \in \mathbb{N} \; [\textit{n} > \textit{N} \implies \textit{f}(\textit{n}) \leq \textit{C} \cdot \textit{g}(\textit{n})] \}$$

Логика вообще

Логика — ???

Логика вообще

Логика — формализации рассуждений

Логики

- Силлогистическая логика
- Пропозициональная логика
- Предикатная логика
- Модальная логика
- Математическая логика
- Философская логика
- Неформальная логика (риторика)
- Диалектическая логика
- **.**..

Логики

- ▶ Силлогистическая логика
- ▶ Пропозициональная логика
- ▶ Предикатная логика
- ▶ Модальная логика
- Математическая логика
- Философская логика
- Неформальная логика (риторика)
- ▶ Диалектическая логика
- ...

Логика высказываний

Логика высказываний

Определение 1

Высказыванием (англ. proposition) называется повествовательное предложение, которое можно считать истинным или ложным.

Логика высказываний

Определение 1

Высказыванием (англ. proposition) называется повествовательное предложение, которое можно считать истинным или ложным.

Определение 2

Будем также говорить, что высказывание имеет **истинностное значение** «истина» (true, 1), если оно истинно, и «ложь» (false, 0), если оно ложно.

Примеры высказываний

Примеры высказываний

Упражнение 1

Определите, какие из следующих предложений являются высказываниями.

- 1. На улице идёт дождь, а я сижу дома.
- 2. 30 нечётное число.
- 3. κ чётное число.
- 4. Убивать людей плохо.
- 5. Выйди и зайди нормально.

Определение 3

Если P_1 , P_2 — высказывания, можно составить из них новые высказывания при помощи **логических связок**. Логические связки также называют логическими *операциями*.

Определение 3

Если P_1 , P_2 — высказывания, можно составить из них новые высказывания при помощи **логических связок**. Логические связки также называют логическими *операциями*.

В следующих слайдах будем считать P_1 , P_2 высказываниями.

Определение 4

Конъюнкцией называется высказывание $P_1 \wedge P_2$ (P_1 и P_2), которое истинно тогда и только тогда, когда P_1 истинно и P_2 истинно; другими словами, $P_1=1$ и $P_2=1$.

Другие возможные обозначения: P_1 and P_2 , $P_1 \& P_2$, $P_1 \& \& P_2$, $P_1 + P_2$.

Определение 3

Если P_1 , P_2 — высказывания, можно составить из них новые высказывания при помощи **логических связок**. Логические связки также называют логическими *операциями*.

В следующих слайдах будем считать P_1 , P_2 высказываниями.

Определение 4

Конъюнкцией называется высказывание $P_1 \wedge P_2$ (P_1 и P_2), которое истинно тогда и только тогда, когда P_1 истинно и P_2 истинно; другими словами, $P_1=1$ и $P_2=1$.

Другие возможные обозначения: P_1 and P_2 , $P_1 \& P_2$, $P_1 \& \& P_2$, $P_1 \cdot P_2$.

Упражнение 2

Когда конъюнкция ложна?



Определение 5

Дизъюнкцией называется высказывание $P_1 \vee P_2$ (P_1 или P_2), которое ложно в том и только том случае, когда P_1 ложно и P_2 ложно; другими словами, $P_1=0$ и $P_2=0$.

Другие возможные обозначения: P_1 or P_2 , $P_1 \mid P_2$, $P_1 \mid P_2$, $P_1 + P_2$.

Определение 5

Дизъюнкцией называется высказывание $P_1 \vee P_2$ (P_1 или P_2), которое ложно в том и только том случае, когда P_1 ложно и P_2 ложно; другими словами, $P_1=0$ и $P_2=0$.

Другие возможные обозначения: P_1 or P_2 , $P_1 \mid P_2$, $P_1 \mid P_2$, $P_1 + P_2$.

Упражнение 3

Когда дизъюнкция истинна?

Определение 5

Дизъюнкцией называется высказывание $P_1 \vee P_2$ (P_1 или P_2), которое ложно в том и только том случае, когда P_1 ложно и P_2 ложно; другими словами, $P_1=0$ и $P_2=0$.

Другие возможные обозначения: P_1 or P_2 , $P_1 \mid P_2$, $P_1 \mid P_2$, $P_1 + P_2$.

Упражнение 3

Когда дизъюнкция истинна?

Замечание 1

В обыденной речи слово «или» используется зачастую как *исключающее или* (XOR, eXclusive OR), которое верно тогда и только тогда, когда верно ровно одно из двух высказываний.

Определение 6

Отрицанием называется высказывание $\neg P_1$ (не P_1), которое истинно, если и только если P_1 ложно.

Определение 6

Отрицанием называется высказывание $\neg P_1$ (не P_1), которое истинно, если и только если P_1 ложно.

Упражнение 4

Когда отрицание ложно?

Определение 7

Импликацией называется высказывание $P_1 \Longrightarrow P_2$ (из P_1 следует P_2 ; если P_1 , то P_2 ; P_1 влечёт P_2 ; P_2 — следствие P_1). Импликация $P_1 \Longrightarrow P_2$ ложна тогда и только тогда, когда $P_1=1$, а $P_2=0$. Высказывание P_1 в данном случае называется посылкой, или антецедентом импликации, а P_2 — заключением, или следствием, или консеквентом.

Определение 7

Импликацией называется высказывание $P_1 \Longrightarrow P_2$ (из P_1 следует P_2 ; если P_1 , то P_2 ; P_1 влечёт P_2 ; P_2 — следствие P_1). Импликация $P_1 \Longrightarrow P_2$ ложна тогда и только тогда, когда $P_1=1$, а $P_2=0$. Высказывание P_1 в данном случае называется посылкой, или антецедентом импликации, а P_2 — заключением, или следствием, или консеквентом.

Упражнение 5

Когда импликация истинна?

Замечание 2

Важно заметить, что истинность импликации определяется только истинностью составляющих её высказываний и ничем больше. Тогда как в «реальной жизни» выражение вида «если A, то B» подразумевает наличие *причинно-следственных связей*, от которых также зависит истинность такого утверждения. Логическая импликация, которой мы будем пользоваться, иногда называется *материальной импликацией*.

Таблицы истинности

Таблицы истинности

Определение 8

Связь между истинностью логических связок и истинностью входящих в них высказываний можно записать в виде таблиц, которые называются **таблицами истинности**.

Таблицы истинности

Определение 8

Связь между истинностью логических связок и истинностью входящих в них высказываний можно записать в виде таблиц, которые называются **таблицами истинности**.

Α	В	$A \wedge B$	$A \vee B$	$A \Longrightarrow B$
0	0	0	0	1
0	1	0	1	1
1	0	0	1	0
1	1	1	1	1

Α	$\neg A$
0	1
1	0

Замечание 3

Конъюнкция, дизъюнкция и отрицание протестов обыкновенно не вызывает. А вот с принятием импликации возникают трудности — почему при ложной посылке импликация всегда верна?

Замечание 3

Конъюнкция, дизъюнкция и отрицание протестов обыкновенно не вызывает. А вот с принятием импликации возникают трудности — почему при ложной посылке импликация всегда верна?

Пример 1

 $P \implies P$ — верно или неверно?

Замечание 3

Конъюнкция, дизъюнкция и отрицание протестов обыкновенно не вызывает. А вот с принятием импликации возникают трудности — почему при ложной посылке импликация всегда верна?

Пример 1

$$P \Longrightarrow P-$$
 верно или неверно?
Если $P=0$, то $P \Longrightarrow P=0 \Longrightarrow 0$.

Замечание 3

Конъюнкция, дизъюнкция и отрицание протестов обыкновенно не вызывает. А вот с принятием импликации возникают трудности — почему при ложной посылке импликация всегда верна?

Пример 1

$$P \Longrightarrow P-$$
 верно или неверно?
Если $P=0$, то $P \Longrightarrow P=0 \Longrightarrow 0$.

Пример 2

$$(P \wedge Q) \implies P$$
 — истина или ложь?

Логические связки, импликация

Замечание 3

Конъюнкция, дизъюнкция и отрицание протестов обыкновенно не вызывает. А вот с принятием импликации возникают трудности — почему при ложной посылке импликация всегда верна?

Пример 1

$$P \Longrightarrow P-$$
 верно или неверно?
Если $P=0$, то $P \Longrightarrow P=0 \Longrightarrow 0$.

Пример 2

$$(P \wedge Q) \implies P$$
 — истина или ложь?
Если $P=1$, а $Q=0$, то $(P \wedge Q) \implies P=0 \implies 1$

Упражнение 6

Пусть P_1 означает высказывание «n делится на 2», а P_2 — «n делится на 3». Сформулируйте на русском языке высказывание $P_1 \wedge P_2$ без использования союза «u».

Упражнение б

Пусть P_1 означает высказывание «n делится на 2», а P_2 — «n делится на 3». Сформулируйте на русском языке высказывание $P_1 \wedge P_2$ без использования союза «u».

Упражнение 7

Пусть P и Q обозначают высказывания «Даша пьёт чай» и «Маша пьёт чай» соответственно. Напишите в логической форме следующие высказывания:

- 1. Даша и Маша пьют чай вдвоём.
- 2. Маша и Даша не пьют чай вдвоём.
- 3. Ни Маша, ни Даша не пьёт чай.
- 4. Либо Маша пьёт чай, либо Даша пьёт чай.

Упражнение 8

Формализуйте следующие высказывания:

- 1. Завтра пойдёт дождь или снег, но не одновременно.
- 2. Я поеду на работу на своей машине или вызову такси, если завтра пойдёт дождь.
- 3. Я не поеду на работу на своей машине и не буду вызывать такси, если завтра не будет ни дождя, ни снегопада.

Упражнение 8

Формализуйте следующие высказывания:

- 1. Завтра пойдёт дождь или снег, но не одновременно.
- 2. Я поеду на работу на своей машине или вызову такси, если завтра пойдёт дождь.
- 3. Я не поеду на работу на своей машине и не буду вызывать такси, если завтра не будет ни дождя, ни снегопада.

Упражнение 9

Сформулируйте по-русски отрицание каждого высказывания из предыдущего упражнения и запишите их в логической форме.

Упражнение 10

Три школьника то ли изучали логику, то ли не изучали. Высказывание P_k при k=1,2,3 означает, k-й школьник логику изучал. Известно, что истинно высказывание $(P_1\implies P_3)\wedge \neg (P_2\implies P_3).$ Кто из них изучал логику, а кто — нет?

Упражнение 11

- 1. Если ты выйдешь на улицу в дождь без зонта, то ты промокнешь.
- 2. Ты промокнешь, если выйдешь на улицу в дождь без зонта.
- 3. Ты промокнешь, только если выйдешь на улицу в дождь без зонта.
- 4. Достаточно выйти на улицу в дождь без зонта, чтобы промокнуть.
- 5. Чтобы промокнуть, необходимо выйти на улицу в дождь без зонта.
- 6. Ты промокнешь тогда, когда выйдешь на улицу в дождь без зонта.
- 7. Ты промокнешь только тогда, когда выйдешь на улицу в дождь без зонта.

Упражнение 12

Какие из следующих условий необходимы для того, чтобы натуральное число n делилось на 10?

- **1**. *п* делится на 5.
- **2**. *n* делится на 20.
- **3**. *n* чётно и делится на 5.
- 4. n = 100.
- **5**. n^2 делится на 100.

Упражнение 13

Какие из следующих условий являются достаточными для того, чтобы натуральное число n делилось на 10?

- **1**. *п* делится на 5.
- **2**. *n* делится на 20.
- **3**. n чётно и делится на 5.
- 4. n = 100.
- **5**. n^2 делится на 100.

Упражнение 14

Какие из следующих условий являются необходимыми и достаточными для того, чтобы натурально число n делилось на 10?

- **1**. *п* делится на 5.
- **2**. *п* делится на 20.
- **3**. *n* чётно и делится на 5.
- 4. n = 100.
- **5**. n^2 делится на 100.

Логические связки, эквивалентность

Определение 9

Эквивалентностью называется высказывание $P_1 \iff P_2$, которое справедливо тогда и только тогда, когда справедливость P_1 совпадает со справедливостью P_2 .. Другие возможные обозначения: $P_1 \longleftrightarrow P_2$, P_1 iff P_2 , P_1 титтк P_2 .

Упражнение 15

Нарисуйте таблицу истинности для высказывания $(P \implies Q) \wedge (Q \implies P).$

Упражнение 15

Нарисуйте таблицу истинности для высказывания $(P \implies Q) \wedge (Q \implies P).$

Определение 10

(Другое определение.) **Эквивалентностью** называется высказывание вида $(P_1 \implies P_2) \wedge (P_2 \implies P_1)$.

Пропозициональные переменные

Определение 11

Высказывания, которые нельзя разложить на более простые, т. е. те, которые не содержат в себе логических связок, будем называть **пропозициональными переменными** и обозначать заглавными латинскими буквами (возможно, с нижними индексами из \mathbb{N}).

Пропозициональные формулы

Определение 12

Пропозициональной формулой называется высказывание, построенное при помощи пропозициональных переменных, логических связок и скобок по следующим правилам:

- 1. каждая пропозициональная переменная является пропозициональной формулой;
- 2. если P пропозициональная формула, то $\neg P$ тоже пропозициональная формула;
- 3. если P_1 и P_2 пропозициональные формулы, то $(P_1 \wedge P_2)$, $(P_1 \vee P_2)$, $(P_1 \implies P_2)$ пропозициональные формулы;
- 4. ничто другое не является пропозициональной формулой.

Приоритеты операций

Эквивалентность высказываний

Эквивалентность высказываний

Определение 13

Пропозициональные формулы называются эквивалентными, если они истинны при одних и тех же значениях переменных.

Эквивалентность высказываний

Определение 13

Пропозициональные формулы называются эквивалентными, если они истинны при одних и тех же значениях переменных.

$$(P \land Q) \iff (Q \land P)$$

$$((P \land Q) \land R) \iff (P \land (Q \land R))$$

$$(P \lor Q) \iff (Q \lor R)$$

$$((P \lor Q) \lor R) \iff (P \lor (Q \lor R))$$

$$(P \land (Q \lor R)) \iff ((P \land Q) \lor (P \land R))$$

$$(P \lor (Q \land R)) \iff ((P \lor Q) \land (P \lor R))$$

$$\neg (P \land Q) \iff (\neg P \lor \neg Q)$$

$$\neg (P \lor Q) \iff (\neg P \land \neg Q)$$

$$P \iff \neg \neg P$$

$$(P \implies Q) \iff (\neg Q \implies \neg P)$$

Упражнение 16

Постройте таблицу истинности для пропозициональной формулы $\neg(P\implies R) \vee \neg Q \wedge R.$

Упражнение 16

Постройте таблицу истинности для пропозициональной формулы $\neg(P\implies R)\vee \neg Q\wedge R.$

Упражнение 17

Пусть высказывание $A \uparrow B$ означает, что ложно хотя бы одно из высказываний A, B. Запишите при помощи A, B, \uparrow , (,) высказывания, эквивалентные высказываниям $A \land B$, $A \lor B$.

Упражнение 16

Постройте таблицу истинности для пропозициональной формулы $\neg(P\implies R)\vee \neg Q\wedge R.$

Упражнение 17

Пусть высказывание $A \uparrow B$ означает, что ложно хотя бы одно из высказываний A, B. Запишите при помощи A, B, \uparrow , (,) высказывания, эквивалентные высказываниям $A \land B$, $A \lor B$.

Упражнение 18

Саша смотрит на Пашу, а Паша смотрит на Гришу. Саша женат, а Гриша неженат. Вопрос: смотрит ли женатый на неженатого? Обоснуйте ответ.

Упражнение 19

Для натуральных m и n верно, что mn — чётно титтк m и n — чётны? Обоснуйте ответ.

Упражнение 19

Для натуральных m и n верно, что mn — чётно титтк m и n — чётны? Обоснуйте ответ.

Упражнение 20

Для натуральных m и n верно, что mn — нечётно титтк m и n — нечётные? Обоснуйте ответ.

Определение 14

Значки \forall и \exists называются **кванторами**. Значок \forall означает «для каждого» и называется *квантором всеобщности*, а \exists означает «существует» и называется *квантором существования*.

Определение 14

Значки \forall и \exists называются **кванторами**. Значок \forall означает «для каждого» и называется *квантором всеобщности*, а \exists означает «существует» и называется *квантором существования*.

 \forall — for **A**II. \exists — there **E**xists.

Определение 14

Значки \forall и \exists называются **кванторами**. Значок \forall означает «для каждого» и называется *квантором всеобщности*, а \exists означает «существует» и называется *квантором существования*.

 \forall — for All. \exists — there **E**xists.

Замечание 4

Утверждения с кванторами: $\exists x \in X \ P(x)$ и $\forall x \in X \ P(x)$ можно считать разновидностью дизъюнкции и конъюнкции бесконечного числа аргументов соответственно. Если $X = \{x_1, x_2, \ldots, x_n\}$, то $\exists x \in X \ P(x)$ можно переписать как $P(x_1) \lor P(x_2) \lor \ldots \lor P(x_n)$, а $\forall x \in X \ P(x)$ можно записать как $P(x_1) \land P(x_2) \land \ldots \land P(x_n)$.

Пример 3

Выражение $\forall a \in \mathbb{N} \ \exists b \in \mathbb{N} : b > a$ читается как «для каждого натурального числа a существует натуральное число b такое, что a меньше b». Другими словами: «для каждого натурального числа существует натуральное число, которое больше его».

Пример 3

Выражение $\forall a \in \mathbb{N} \ \exists b \in \mathbb{N} : b > a$ читается как «для каждого натурального числа a существует натуральное число b такое, что a меньше b». Другими словами: «для каждого натурального числа существует натуральное число, которое больше его».

Пример 4

Выражение $\exists b \in \mathbb{N} \ \forall a \in \mathbb{N} : b > a$ читается как «существует такое натуральное число, которое больше всех натуральных чисел».

Пример 3

Выражение $\forall a \in \mathbb{N} \ \exists b \in \mathbb{N} : b > a$ читается как «для каждого натурального числа a существует натуральное число b такое, что a меньше b». Другими словами: «для каждого натурального числа существует натуральное число, которое больше его».

Пример 4

Выражение $\exists b \in \mathbb{N} \ \forall a \in \mathbb{N} : b > a$ читается как «существует такое натуральное число, которое больше всех натуральных чисел».

Упражнение 21

Какие из утверждений выше верны и почему?

Кванторы, упражнения

Упражнение 22

Формализуйте следующее высказывание: «В США водительские права, действующие в одном штате, действуют во всех штатах».

 $\operatorname{Valid}(L,S)$ означает «водительские права L действуют в штате S».

Кванторы, упражнения

Упражнение 23

Сформулируйте отрицание высказывания из предыдущего упражнения и формализуйте его.

Кванторы, отрицания

Замечание 5

$$\neg \forall x P(x) \iff \exists x \neg P(x)$$
$$\neg \exists x P(x) \iff \forall x \neg P(x)$$

Кванторы, упражнения

Упражнение 24

Формализуйте следующие утверждения.

- 1. Всем кто-то нравится.
- 2. Никого нет дома.
- 3. Бывают иррациональные числа.
- 4. Не существует наибольшего иррационального числа.

Кванторы, упражнения

Упражнение 25

Можно всё время дурачить некоторых, можно некоторое время дурачить всех, но нельзя всё время дурачить всех.

— Авраам Линкольн

F(p,t) означает «вы можете дурачить человека p во время t».

Кванторы, ∃!

Упражнение 26

Выражение $\exists !x\; P(x)$ означает «существует единственный x такой, что P(x)». Дайте определение $\exists !$ с помощью связок и кванторов.